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Abstract. The kinetics of a ternary system is investigated using the cluster-variation method
and the path probability method in the pair approximation. It is shown that differences
between the diffusive jump rates for the three atomic species of a ternary system have a strong
effect on the kinetics of the system. The calculated metastable phase diagram of the system
shows the existence of transient ordered states during the relaxation both from the completely
disordered state to the equilibrium disordered state and from the completely disordered state to
the equilibrium ordered state due to the differences between the relaxation times for the three
atomic species. The kinetic paths of ordering and disordering are classified according to the
metastable phase diagram. From the study of the kinetics of ordering and disordering, it is shown
that there are two types of transient ordered state and that there are overshooting effects during
the relaxation from the disordered state to the equilibrium ordered state. It is also shown that
there is an anomalous effect in the evolution of long-range ordering parameters in the kinetics
of disordering for a ternary system.

1. Introduction

Non-equilibrium kinetics of materials plays an important role in materials growth. In
recent years, new experimental methods such as rapid quenching, laser processing, ion-
beam bombardment and various epitaxial processes have been used to prepare materials
that are in non-equilibrium states thermodynamically. Equilibrium phase diagrams do not
deliver sufficient information for such non-equilibrium growth processes. In order to obtain
a better understanding of non-equilibrium growth processes, it is important to investigate
the metastable phase diagrams and the fundamental aspects of the kinetics of ordering and
disordering of the systems. In the kinetics of order–disorder transformations [1–5], there
are two usual processes. One process is that in which a disordered phase develops into
an ordered phase and the other is the process in which an ordered phase relaxes to an
equilibrium disordered phase. It was found that there are various aspects to the kinetics of
the ordering and disordering. In some systems, transient ordered states are formed during
the relaxation from the non-equilibrium state to the equilibrium state [6–8]. For binary
alloys, the occurrence of transient ordered states needs special conditions such as suitable
interaction energy of the constituent atoms. For ternary alloys, the kinetic paths are less
intuitive than for binary alloys [3]. In a binary alloy, there are only two species. Although
there are two characteristic times for the atomic migration of the two species (A and B),
only the time constant of the A–B atom exchange is responsible for the change of the
structure of the system. Thus the kinetic relaxation time is determined by the slower of
the diffusion rates of the two species for a binary system. In a ternary system, there are
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more characteristic times for the atomic migration that control the relaxation of different
species and thus significant differences in the kinetics can arise correspondingly. Due to
the differences in the characteristic times for the atomic migration of the three species in
a ternary system, two of the three species may first form a kind of transient state on its
relaxation path to the final equilibrium phase. In this paper, we will investigate the formation
and kinetics of the transient states in a ternary system. We will show that there is a type of
transient ordered state in the ternary system due to the differences in the diffusion rates of
the three atomic species from the calculated metastable phase diagram. The kinetic paths of
ordering and disordering are classified according to the metastable phase diagram. Different
types of evolution process are calculated and analysed. Several features in the kinetics of
the ordering and disordering are illustrated

The outline of this paper is as follows. Section 2 presents the results on the metastable
phase diagram. Section 3 describes the kinetics of the transient states. In section 4 we give
our conclusions.

2. The metastable phase diagram

We describe a ternary system AxByC1−x−y as a lattice gas with the Hamiltonian

H =
∑
{ij}

∑
ss ′
Ess ′c

s
i c
s ′
j −N

∑
s

µsxs. (1)

The variablecsi = 1 if the sitei is occupied by an atoms (=A, B, C) and is zero otherwise.
The notation{ij} means summation over the pairs of nearest-neighbour lattice sites.Ess ′

represents the nearest-neighbour interaction energy.N is the number of lattice sites,µs is
the chemical potential andxs is the concentration of thes-species. In the following, we
will use the subscripts 1, 2, 3 to represent the A, B, C species of atoms respectively.

We can also use the three-component Blume–Emery–Griffiths (BEG) spin model [9, 10]
to represent the Hamiltonian of a ternary system equivalently, by mapping the spin
si = {+1,−1, 0} onto the species A, B and C:

H = J
∑
{i,j}

sisj −K
∑
{i,j}

s2
i s

2
j + L

∑
{i,j}
(s2
i sj + sis2

j )+ µ
∑
i

s2
i + h

∑
i

si . (2)

The energy parameters of the BEG Hamiltonian are related to the atomic nearest-neighbour
interaction energies in the alloy Hamiltonian by the following equations [10]:

4J = E11+ E22− 2E12 (3)

4K = −E11− E22− 2E12− 4E33+ 4(E13+ E23) (4)

4L = E11− E22+ 2(E23− E13) (5)

µ = µ3− 1

2
(µ1+ µ2)− zE33+ z

2
(E13+ E23) (6)

h = 1

2
(µ2− µ1)− z

2
(E23− E13) (7)

wherez is the coordination number of the lattice. Since the alloy Hamiltonian of equation
(1) and the BEG Hamiltonian of equation (2) are equivalent, only three independent energy
parameters, such asJ , K, L, are required to describe the equilibrium phase diagram.
This point will be made clearer if we compare with the binary system. For a binary
system, only one energy parameterε = E12 − (E11 + E22)/2 is relevant to the phase
diagram. The three species of a ternary system can form three combinations of binary
systems. So we have three energy parameters to describe the phase diagram in a ternary
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system. There are six independent nearest-neighbour interaction energies in the lattice-gas
Hamiltonian (1). Due to the constraintcAi + cBi + cCi = 1, not all of the terms appearing
in (1) are ‘interaction’ terms. Taking, e.g.,cCi = 1 − cAi + cBi , the energy term in the
lattice-gas Hamiltonian may be rewritten in terms of A and B variables. There are three
‘interaction’ termsE′AA = EAA − 2EAC + ECC , E′AB = EAB − EAC − EBC + ECC and
E′BB = EBB − 2EBC + ECC , two ‘local potential’ termsεA and εB , and a constant term
E0 = NzECC/2. The ‘local potential’ terms can be added to the chemical potential terms.
At fixed concentrationsx1 and x2, the Helmholtz free energyF = Fint + Floc is such
that the ‘local potential’ contribution is triviallyFloc = N(εAx1 + εBx2) + E0, which is
the same for all of the phases, so the equilibrium properties are determined by only three
parameters (e.g.J ,K, L) by just comparing the ‘interaction’ contributionFint in the different
phases.

The spin-1 BEG model is a model which was originally used to describe the phase
transition in3He–4He mixtures [9]. It has been shown that the BEG model has rich structures
in the phase diagrams [11–17]. In order to compare with the equilibrium properties, we use
the cluster-variation method [18–21] in the pair approximation, which is also often called
the Bethe–Peierls approximation, to calculate the equilibrium phase diagram. In the pair
approximation, the oriented-pair probability that ans-atom on anα-sublattice site is bonded
to ans ′-atom on aβ-sublattice site is represented byPss ′ and the probability that ans-atom
occupies anα-sublattice site is represented byPαs . The equilibrium state of the system is
derived by minimizing the grand-canonical potentialG defined as

G = E − T S −N
3∑
i=1

µixi (8)

whereT is the absolute temperature.E is the energy of the alloy given by

E = zN
∑
i,j

Ei,jPij . (9)

S is the configurational entropy given by

S = NkB
[
−z

∑
i,j

Pij lnPij + (z− 1)
∑
i,ν

P νi lnP νi

]
(10)

wherekB is Boltzmann’s constant.
The symmetry of the phase in the system is determined by the site probabilityP νs . For

the situation in which it is possible to subdivide the lattice into two sublatticesα andβ, we
can also describe the phase in terms of the magnetization and quadrupolar moments of the
sublatticesα andβ in the BEG model:

mα = 〈si〉α mβ = 〈si〉β qα = 〈s2
i 〉α qβ = 〈s2

i 〉β. (11)

The values of these parameters define the following phases with different symmetries:

(1) the disordered phase:mα = mβ , qα = qβ ;
(2) the ordered phase O1: mi 6= 0, mα 6= mβ ;
(3) the ordered phase O2: mα = 0 ormβ = 0, qα 6= qβ .

For the determination of the phase diagrams of the system, we minimize the grand
potentialG using the Kikuchi natural iteration scheme [19] in which the chemical potentials
µi and temperatureT are the input variables. As we change the chemical potentialµ and
temperatureT , we can determine the phase boundaries by searching for those special values
of the chemical potentialsµi and corresponding compositionsxi for which two phases
coexist.
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Figure 1. The calculated equilibrium phase diagram (solid line) and metastable phase diagram
(dotted line) atkBT = 0.1 eV in the Gibbs composition triangle. O1 and O2 are two ordered
phases in the equilibrium phase diagram and Om is the ordered phase in the metastable phase
diagram. The disordered phase is indicated as D.

We will investigate the case in which it is possible to subdivide the lattice into two
sublatticesα and β. The honeycomb lattice is one of the simplest lattices with two
sublattices. For the BEG model on the honeycomb lattice, extensive studies have been
carried out by different techniques and this has provided the basis for the investigations
on the kinetics of the system. The BEG model on the honeycomb lattice has been solved
exactly for some subspaces in the energy parameter space [22–26]. Kaneyoshi [27, 28] has
studied the phase diagrams for the honeycomb lattice by means of the correlated-effective-
field method (CEFT). Gwa and Wu [29] have determined the critical surface of second-order
transitions of the BEG model on the honeycomb lattice. Rosengren and Lapinskas [17] have
investigated the phase diagram of the BEG model on the honeycomb lattice using the CVM.
There have also been investigations of the ternary system on the honeycomb lattice using an
alloy Hamiltonian which is equivalent to the BEG model via the CVM [4] and Monte Carlo
method [30]. Smith and Zangwill [4] have calculated the equilibrium phase diagrams and
the kinetics of the ordering and disordering on the two-dimensional honeycomb lattice. They
have only considered the case in which the diffusion rates of all of the atomic species are the
same. Since we will investigate how the differences in the diffusion rates of the three atomic
species affect the kinetics of the system, we will consider the two-dimensional honeycomb
lattice as a representative case in the following and compare our results with those of Smith
and Zangwill [4] and Monte Carlo results for the same lattice and same energy parameters.
The results for the square lattice are similar. We choose the same interaction energies as
were used by Smith and Zangwill [4] and Zhang and Murch [30], e.g.,E11 = E22 = 1.0 eV,
E12 = 0.8 eV andE13 = E23 = E33 = 0.0 which correspond to the energy parameters
J = 0.1 eV, K = −0.9 eV, L = 0.0. A system with such energy parameters exhibits
ordering for all three species because the alloy parametersε1 = E12− (E11+ E22)/2 < 0,
ε2 = E13− (E11+ E33)/2 < 0 andε3 = E23− (E22+ E33)/2 < 0. A system with such
energy parameters is expected to exhibit no phase separation. Figure 1 shows the calculated
equilibrium phase diagram of the ternary system atT = 0.1 eV in the Gibbs composition
triangle. In the phase diagram, there are two ordered phases, O1 and O2. In the ordered
phase O1, component C has a disordered distribution and the ordering occurs among the
A and B atoms, which reflects the usual binary ordering scenario of A and B atoms. In
the ordered phase O2, the ordering occurs among components C and A+ B. Between the
ordered phase O1 and the ordered phase O2, there is a hole-shaped disordered region in the
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middle of the triangle. The results are similar to those from the previous calculations for
equilibrium phase diagrams [4, 30]

Now we consider the calculation of the metastable phase diagram of the system. Two
factors affect the kinetics of the system in the relaxation of the system from a non-equilibrium
state to an equilibrium state: (i) the atomic interaction energy; and (ii) the activation barrier
height which determines the diffusive jumping rates of the atoms. Generally the activation
barrier energies of A and B atoms are different. In order to investigate how these different
activation barrier energies and correspondingly the different diffusive jumping rates of the
atoms affect the kinetics of the system, we consider an extreme case, i.e. that in which one
species (taken as A atoms) moves much more slowly than the other two species (taken as B
and C atoms). The initial state of the system is chosen to be a completely disordered state,
which would correspond to the configuration of a system quenched from high temperature.
The system will relax to its equilibrium state in two stages. In the first stage, only B and
C atoms move while A atoms are in a state of relative rest because A atoms move much
more slowly than B and C atoms. The system evolves to a metastable state in which A
atoms remain in their disordered configuration and B and C atoms have relaxed to their
local equilibrium state. After the system reaches the metastable state, the evolution process
enters its second stage. In the second stage, A atoms slowly move and the whole system
relaxes to its final equilibrium state gradually.

In the calculation of the metastable phase diagram, we use the modified Kikuchi
approximation [31] in order to study the metastable phase. The Helmholtz free energy
F = E − T S is minimized instead of the grand-canonical potential. Since A atoms
are randomly distributed in the metastable state, there are three constraint equations that
represent the random distribution of A atoms:∑

i

P1i = x1

∑
i

Pi1 = x1 P11 = x2
1. (12)

We use undetermined Lagrange multipliers to treat the constraints. For each Kikuchi natural
iteration we use the method of steepest descent to determine the undetermined Lagrange
multipliers. The dotted line in figure 1 shows the calculated metastable phase diagram. It
is interesting to note that the ordered phase region of the metastable phase diagram is not
all included in the ordered phase region of the equilibrium phase diagram. Some of the
metastable ordered phase region overlaps with the equilibrium disordered phase region. This
means that a transient ordered phase Om will occur in the first stage of the kinetic evolution
of a highly disordered phase in the overlap region if A atoms move much more slowly.
Since the equilibrium phase of this overlap region is a disordered phase, this transient
ordered phase will evolve to an equilibrium disordered phase finally. Therefore its kinetic
route is expected to be disordered state–ordered state–disordered state. From figure 1 it can
be seen that the region of the metastable phase Om also overlaps with that of the ordered
phases O1 and O2. In the regions of overlap of the metastable phase Om and the ordered
phases O1 and O2, we also expect a transient ordered state characteristic of Om to occur
during the relaxation from the initial disordered phase to the ordered phases O1 and O2

if A atoms move more slowly. Thus the kinetic paths can be classified according to the
metastable phase diagram.

3. The kinetics of transient states

We employ the path probability method (PPM) [1, 2, 32] to investigate the non-equilibrium
evolution process of the system. The path probability method can be shown to be equivalent
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[33] to the master equation method (MEM) [34] in the pair approximation. In the kinetic
process, there are two atom movement mechanisms: (i) the direct interchange of an
atom with a nearest-neighbour atom (the atom–atom interchange mechanism); and (ii) the
interchange of an atom with an adjacent vacancy (the vacancy mechanism). A general
case will combine both two-atom movement mechanisms. We consider a representative
kinetic mechanism which allows only interchanges between (a) components A and C and
(b) components B and C. This mechanism is used in the following two systems: (i) a
conventional ternary alloy with a direct atom interchange mechanism, with the condition
that A–B atom interchange is much slower than other atom interchanges; and (ii) a quasi-
ternary system with two atomic constituents and one vacancy component, with an atom–
vacancy interchange mechanism. We are concerned with the case of the full range of
vacancy concentration which can describe the ordering and disordering of co-deposition of
a monolayer composed of two atomic constituents onto a crystal surface [4] rather than
the kinetics of bulk binary alloys mediated by a very small vacancy concentration. Other
kinetic mechanisms can lead to quantitative differences in the kinetics of the system, but
the qualitative features will remain similar.

There are six independent pair probabilities which are characterized by three long-range
order (LRO) parameters

γ1 = Pα1 − Pβ1 γ2 = Pα2 − Pβ2 γ3 = P13− P31 (13)

and three short-range order (SRO) parameters

γ4 = P13+ P31 γ5 = P23+ P32 γ6 = P12+ P21. (14)

The signs of the LRO parametersγ1 andγ2 are opposite in the ordered phase O1. In the
phase O2, these LRO parameters have the same sign. In the disordered phase all of the
LRO parameters are zero.

We determine the time evolution of the LRO and SRO by use of the PPM. In the PPM,
the path probability function is defined as the counterpart of the free-energy functional of
the CVM. There are two types of path variable,Xνi,j (t, t + 1t) and Yij,i ′j ′(t, t + 1t), in
the pair approximation used to describe the path probability. The superscriptν (=α, β)
denotes the sublattices of the site probability.Xνi,j (t, t +1t) describes the fraction of the
species which arei at time t and will change toi ′ at t + 1t , andYij,i ′j ′(t, t + 1t) is the
fraction of pairs which are(i, j) at time t and will change to(i ′, j ′) at t + 1t . The path
probability functionP is given as the product of three terms. The first one corresponds to
the probability of occurrence of the unit kinetic process:

P1 =
∏
ν

2∏
i=1

(θi 1t)
NXνi,3+NXν3,i (1− θi 1t)NXνi,i+NXν3,3 (15)

where θ1 is the rate of atomic exchange between species A and C, andθ2 is the rate
of atomic exchange between species B and C.θi is temperature dependent for a thermal
activation process overcoming the saddle point energy of an exchange event. The second
factor depends on the activation energy and is a generalization of the Boltzmann factor.
With the use of the energy change in1t of the system:

1E =
∑
i,j

Ei,j [Pi,j (t +1t)− Pi,j (t)] (16)

the second factor is taken to be

P2 = exp

(
− 1E

2kBT

)
. (17)
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The third factor is the combinatorial factor corresponding to the entropy in the equilibrium
case. The state variables in the combinatorial factor of the CVM are replaced by the path
variables in the corresponding approximation:

P3 =
(∏

ν

∏
i,j

(NXνi,j )!

)z−1/[( ∏
(i,j)(i ′,j ′)

(NYij,i ′j ′)!

)z
(N !)z−2

]
. (18)

Thus the first term,P1, gives the contribution to the path probability function from non-
correlated atomic jumps whereas the second term,P2, represents the thermally activated
process. The key feature of the PPM is provided by the last term,P3, which represents the
number of possible paths from one given configuration to another. The path variablesYij,kl
can be represented by the path variablesYi3,3i andY3i,i3. We obtain the most probable path
variables by differentiatingP(t, t+1t) with respect to the independent path variablesYi3,3i
andY3i,i3.

This leads to a set of six coupled non-linear differential equations, which have the form

d

dt
γi(t) = fi(τ1, τ2, γ1, γ2, γ3, γ4, γ5, γ6) (19)

where

τ1 = θ−1
1 exp

(
−z(E13− E33)

kBT

)
(20)

τ2 = θ−1
2 exp

(
−z(E23− E33)

kBT

)
. (21)

τ1 andτ2 are the characteristic times for the relaxation of A and B atoms respectively. When
E13, E23 andE33 are taken to be zero,τ1 = θ−1

1 andτ2 = θ−1
2 . Becauseτ1 andτ2 depend

on E13, E23 andE33, τ1 andτ2 could be very different even in the case whereθ−1
1 = θ−1

2
if E13 andE23 are very different. Due to the equivalence between the alloy Hamiltonian
equation (1) and the BEG Hamiltonian equation (2), different sets ofEij with sameJ,K,L
lead to the same equilibrium phase diagram. Therefore, the interaction energyEij affects
the kinetics of the system only through the energy parametersJ,K,L and the characteristic
timesτ1 andτ2.

We have performed a calculation of the kinetics of the system for differentτ1 and τ2.
The different types of kinetic path classified according to the metastable phase diagram in
figure 1 are considered. The differential equations describing the kinetics of the system
were integrated numerically using Gear’s method [35], appropriate to stiff differential
equations. The equilibrium values obtained from the kinetic equations at sufficiently long
time reproduced those obtained from the equilibrium phase diagram calculation.

First we consider the kinetics of ordering. The initial state is chosen as a completely
random state which can be obtained by quenching the system from high temperature. Thus
the initial values of the SRO parameters are those characteristic of a completely random
state. The LRO parameters are set to 10−6 at t = 0 to describe the incipient fluctuation.
Figure 2 illustrates the evolution of the LRO parameter at a typical point in the overlap
region of the metastable ordered phase Om and the equilibrium disordered phase in the
phase diagram of figure 1. We have takenτ1/τ2 = 103. There are two types of transient
ordered state. One (denoted by the symbol Ot1) has the characteristics of the metastable
phase Om in the metastable phase diagram of figure 1. The other (denoted by the symbol
Ot2) has the characteristics of O1 because the signs of its LRO parametersγ1 and γ2 are
opposite. This shows that the kinetics of the system is more complicated than that obtained
simply from the analysis of the metastable phase diagram. The system first evolves to the
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Figure 2. The evolution of the LRO at a typical point in the overlap region of the equilibrium
disordered phase and the metastable ordered phase Om, with the concentrations of the three
species set atx1 = 0.34, x2 = 0.36 andx3 = 0.3. kBT = 0.1 eV andτ1/τ2 = 103.
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Figure 3. The evolution of the SRO at a typical point in the overlap region of the equilibrium
disordered phase and the metastable ordered phase Om, with the concentrationsx1 = 0.34,
x2 = 0.36 andx3 = 0.3. kBT = 0.1 eV andτ1/τ2 = 103.

transient ordered state Ot1 with the characteristics of Om, in which γ1 is zero and A atoms
remain disordered. Then the magnitude ofγ1 increases gradually, whileγ2 decreases and
γ3 changes from positive to negative. The system evolves to the transient ordered state
Ot2. Finally, all of the LRO parameters become zero. We could consider the kinetics in
the overlap region as a competition between O1 and O2, since it is in the V-shaped region
between O1 and O2. Figure 3 shows the evolution of the SRO with the same parameters as
those of figure 2. From the timescale in the figure, we can see that all of the SRO parameters
change very rapidly. There are several stages in the change. The parameters first develop
from the values of the completely disordered state into those of the correlated state with
short-range order until the system begins to develop into the transient phase Ot1. Then the
SRO parameters evolve to the quasi-equilibrium values of the transient phase Ot1 and then
those of Ot2. Finally, all of the SRO parameters develop to their equilibrium values, and
then remain almost constant during the time period over which the LRO decays to the zero
value of its final equilibrium disordered phase. This final stage of the kinetics shows that
the system is driven to its equilibrium disordered state by entropy alone, since the SRO
parameters change very little; this is also characteristic of other disordering kinetics [2–4].

Figure 4 shows the evolution of the LRO in the overlap region of the metastable ordered
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Figure 4. The evolution of the LRO at a typical point in the overlap region of the equilibrium
ordered phase O1 and the metastable ordered phase Om, with the concentrations of the three
species set atx1 = 0.37, x2 = 0.37 andx3 = 0.26. kBT = 0.06 eV andτ1/τ2 = 104.
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Figure 5. The evolution of the SRO at a typical point in the overlap region of the equilibrium
ordered phase O1 and the metastable ordered phase Om, with the concentrationsx1 = 0.37,
x2 = 0.37 andx3 = 0.26. kBT = 0.06 eV andτ1/τ2 = 104.

phase Om and the equilibrium ordered phase O1 in the phase diagram of figure 1. We have
taken τ1/τ2 = 104. We can see that there are two stages of the relaxation. In the first
stage, the system evolves to the transient ordered state Ot1. Then the system relaxes to its
equilibrium ordered phase O1. It is interesting to note that the system does not approach the
equilibrium ordered phase monotonically. There is a peak in the relaxation curves of the
LRO parametersγ1 andγ2, which means that there is an overshooting effect in the evolution
of the system. This effect has also been found in the kinetics of ordering and disordering for
other systems [36, 37]. Figure 5 illustrates the evolution of the corresponding SRO which
shows clearly that there is a transformation from the SRO of the transient ordered phase
Ot1 to that of the equilibrium ordered phase O1. The SRO relaxes much more quickly than
the LRO, which is reflected by the flat plateau in the curves of the SRO.

Figure 6 shows the evolution of the LRO in the overlap region of the metastable ordered
phase Om and the equilibrium ordered phase O2 in the phase diagram of figure 1. The figure
shows the two relaxation stages clearly. The system first evolves into the transient ordered
state Ot1 and then relaxes into its equilibrium ordered phase O2. In both stages of the
evolution, there are substantial overshooting effects in the LRO parametersγ2. There is
also an overshooting forγ3 in the evolution from the disordered phase to the transient
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ordered phase Ot1. But in the late stage, there is no overshooting forγ3. Figure 7 illustrates
the evolution of the corresponding SRO.
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Figure 6. The evolution of the LRO at a typical point
in the overlap region of the equilibrium ordered phase
O2 and the metastable ordered phase Om, with the
concentrations of the three species set atx1 = 0.3, x2 =
0.3 andx3 = 0.4. kBT = 0.1 eV andτ1/τ2 = 103.

Figure 7. The evolution of the SRO at a typical point
in the overlap region of the equilibrium ordered phase
O2 and the metastable ordered phase Om, with the
concentrations of the three species set atx1 = 0.3, x2 =
0.3 andx3 = 0.4. kBT = 0.1 eV andτ1/τ2 = 103.
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Figure 8. The evolution of the LRO in the region of the
equilibrium disordered phase, with the concentrations of
the three species set atx1 = 0.4, x2 = 0.4 andx3 = 0.2.
kBT = 0.2 eV andτ1/τ2 = 102.

Figure 9. The evolution of the SRO in the region of the
equilibrium disordered phase, with the concentrations of
the three species set atx1 = 0.4, x2 = 0.4 andx3 = 0.2.
kBT = 0.2 eV andτ1/τ2 = 102.

We have also studied the kinetics of disordering. The initial state of the system is chosen
as the ordered state for low temperature which has the maximal LRO and SRO. Figure 8
shows the evolution of the LRO. The composition of the system is chosen as:x1 = 0.4,
x2 = 0.4 andx3 = 0.2. The system is relaxed atkBT = 0.2 eV. It can be seen that the
LRO parameterγ1 decays monotonically while the variation ofγ2 shows fluctuation.γ2

decays to zero initially. But with the movement of A atoms, there is an inverse process
in which γ2 increases anomalously. After reaching a maximum, at which a bending on
the evolution curve ofγ3 also occurs concurrently,γ2 eventually decays to zero. Figure 9
shows the evolution of the corresponding SRO. It shows clearly that the different evolution
aspects of the LRO at the different times in figure 8 are largely due to the differences in the
corresponding SRO of the system. The differences in the relaxation times are responsible
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for the deviation of the evolution curve of the LRO and SRO from monotonic decay.
We have also investigated how the kinetics of the system changes with the ratioτ1/τ2.

Smith and Zangwill [4] have studied the kinetics of ordering and disordering on a two-
dimensional honeycomb lattice by the master equation method. They only considered the
case whereτ1/τ2 = 1, which shows no transient state. In our study, we find that when
τ1/τ2 = 1, the initial completely random state will relax to the equilibrium state directly.
With the increase of the ratioτ1/τ2, we find that the ordering parameters of the transient
ordered state increase gradually. Therefore the ratioτ1/τ2 which measures the difference of
the two characteristic times in the ternary system determines the occurrence of the transient
ordered state Ot1.

4. Conclusions

We have investigated the kinetics of a ternary system. From the calculated metastable phase
diagram, we have predicted the occurrence of a transient ordered state in the kinetic process
of the system in the region of the metastable phase Om if one of the three components has
a slower relaxation time. Since the calculation of the metastable phase diagram is unrelated
to the specific kinetic mechanism, the occurrence of the ordered state Om in the kinetics of
the system does not depend on the specific kinetic mechanism. By means of the metastable
phase diagrams associated with the differences in the diffusion rates of the three atomic
species, we can characterize the kinetic path to equilibrium with the metastable ordered
state Om.

We have calculated the evolution of the LRO and SRO using the PPM in the pair
approximation. The different types of kinetic path classified according to the metastable
phase diagram are considered. We find that there are two transient ordered states Ot1 and
Ot2 in the relaxation from the completely disordered state to the equilibrium disordered state
in the region of overlap between the equilibrium disordered state and the metastable ordered
state. When we quench the transient ordered state Ot1 or Ot2 in the disordered region of
the phase diagram, it is possible to preserve an ordered state at a temperature at which
otherwise an equilibrium disordered phase should occur. It can also be seen that the SRO
plays an important role in the kinetics of the transient states in the ternary system. If there
is no SRO, there is only one type of disordered phase, i.e. there is a completely random
state, the initial disordered phase will be same as the final equilibrium disordered phase
and, thus, no transient state will occur. However, if there is SRO, the final equilibrium
disordered phase with SRO will be different from the initial disordered phase. For the
kinetics of ordering in the region of overlap between the metastable ordered state and the
equilibrium ordered state, there is a transient ordered state Ot1 and an overshooting effect
during the relaxation from the completely disordered state to the equilibrium ordered state.
We have also studied the kinetics of disordering and found that the LRO does not always
decay to zero monotonically. There is an anomalous increase in the LRO parameters during
the relaxation from the ordered state to the equilibrium disordered state when there are
differences between the characteristic times measuring the migration rates of the atomic
species in the ternary system. The differences in the diffusion rates of the three atomic
species affect the migration of the atoms of the different species and change the SRO of the
system. For the two points with roughly the same LRO on either side of the overshooting
peak of the LRO, the corresponding SRO differs and this dictates the different evolution
paths of the LRO; this is also the mechanism of the non-monotonic relaxation. Thus the
differences in the diffusive jump rates for the different atomic species of a ternary system
lead to a rich variety of features in the kinetics of ordering and disordering.
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